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FisPro (Fuzzy Inference System Professional) allows to cre-
ate fuzzy inference systems and to use them for reasoning purposes, especially for
simulating a physical or biological system. Fuzzy inference systems are briefly
described in the fuzzy logic glossary given in the user documentation. They are
based on fuzzy rules, which have a good capability for managing progressive phe-
nomenons.

First of all, the FisPro implementation allows to design fuzzy systems from
the expert knowledge available in a given field, for instance in winemaking. This
approach is illustrated by an example given in the user guide Quickstart with Fis-
Pro.

FisPro also allows the complete design of a fuzzy inference system from the
numerical data related to the problem under study. Many automatic learning meth-
ods unfortunately lead to "black box" systems. In FisPro, constraints are imposed
to the algorithms to make the reasoning rules easy to interpret([1]), so that the
user understands how the fuzzy system operates. This novel approach is one of
the originalities of the software. Some examples are given in the user guide In-
duction with FisPro.

Both approaches, expert rule design and automatic induction, can be combined
to create more complete and better performing systems. FisPro offers educational
tools that illustrate the reasoning mechanism, and other tools to measure the sys-
tem performance on datasets.

This software is made of two distinct parts: a C++ function library, which can
be used independently, and a graphical Java interface, which implements most
functionalities if the C++ library. It is portable, and can run on most existing
platforms.
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FisPro is an open source software, available on the Internet
at:

http://www.inra.fr/mia/M/fispro/

Elementary notions

A system is also called a FIS, or fuzzy inference system.
The abbreviation MF is used for membership function or fuzzy set (see fuzzy

logic glossary, section 3 ).
When starting FisPro, no system is available.
You have a choice between opening an existing system, or creating a new one,

either automatically from data, or by hand, element by element.
This introductory guide explains the way to do it in this last case, suited to

expert rule definition.
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Notes:

• For numerical input, the decimal separator is the point (.).

• Any editing, new input, new output or new MF, is immediately taken in
account in the system. Intermediate pop-up windows can be closed without
loosing modifications.

• Some options are context dependent. When unavailable, options are grayed
out in the menus.

• Expert definition only uses the FIS menu . The Learning menu is for more
advanced needs (automatic rule induction).

• The Data menu allows to open an external data file in text format, to visu-
alize data and to perform batch inference.

Note:

The Language option of the Options menu allows to choose the language you
want for messages and menus.
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1 Create a simple system
The first example creates a very simple system: 1 input, 1 output and 3 rules.

The input is the wine degree, the output is the price paid to the winegrower.
The rules make the price change in function of the degree.

• First choose the New option in the FIS menu.

• The default name New FIS appears in the Name field. It is an editable text
field. Rename it as coop.

• The conjunction is the operator used for combining MFs in the rule premise.
The default operator is the product.

Figure 1: Main window in FisPro

1.1 Define a new input
To add a new input, use either the New Input option of the FIS menu, or a right
mouse click in the Input area of the main window. The Input window appears.

An input is characterized by its range and its fuzzy partition. The fuzzy parti-
tion means the fuzzy sets that describe the input.

It can be active (default) or not.
Rename it Degree.

• The default input range is [0,1].
To change it, select the Range menu in the Input Window, and enter the new
range values: here 9 and 14.

6



• The easiest way to define a partition is the Regular Grid option of the MF
menu, with the number of MFs corresponding to the number of wanted
linguistic terms (default is 3 terms).

• The MFs are displayed in the lower half of the window : semi trapezoidal
MFs at range bounds, and triangles elsewhere.

• For FIS clarity, MF names are important as they appear in the rules.

We now give meaningful names and adjust the vertex location of each MF

– MF 1 : name Low, vertices 9, 11,5 and 12

– MF 2 : name Average, vertices 11,5, 12 and 12,5

– MF 3 : name High, vertices 12, 12,5 and 14

We obtain the partition given in figure 2.

1.2 Edit an input or an output
To change an input or output, double click on its name in the main window.

1.3 Define a new output
To add an output, use either the New Output option of the FIS menu, or a right
mouse click in the Output area of the main window. The Output popup appears.

Rename it Price. An output is mainly characterized by its range and its nature:
crisp output or fuzzy output. The output nature influences the fuzzy inference
mechanism:

• With a crisp output, the rule conclusion can be any numerical value.

• With a fuzzy output, the rule conclusion can only be the linguistic term
associated with an output MF, for instance Low, Average, High.

Indepedently of the output nature, the inference result is a numerical
value.

Other parameters:

• Default value: it is the value of the inference result for this output, if no rule
is fired by the inference.
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Figure 2: Input definition in FisPro
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• Defuzzification and disjunction : choices linked to the way of aggregating
the rule conclusions (see 3).

• classif: check this chekbox to round off the inference result to the closest
class value (discrete value), for a crisp output. The possible classes are
restricted to the rule conclusion values.

If the output is fuzzy, its fuzzy partition must be defined, in the same way
than for an input.

Figure 3: Defining a crisp output in FisPro

1.4 Defining a rule
To create rules, click on the Rule field in the main window. The Rule popup
appears.

A rule is added by using either the New Rule option of the FIS menu, or a right
click on the popup Rule column.
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Click successively on each column, to select the linguistic term that will ap-
pear in the rule, or to enter a numerical output value (for crisp outputs only).

Figure 4: Defining rules in FisPro

1.5 Infer
The Infer option of the FIS menu graphically shows the inference mechanism.
The input values are entered directly or by moving a cursor within each variable
range. The inferred output value is displayed, together with several intermediate
values, which allow to understand the different stages of the fuzzy reasoning:

For each rule:

• membership degree of each input value to each MF that appears in the rule
premise. It is shown as a filled area ratio.

• rule firing strength, or matching degree.

The matching degree is, in our particular case, equal to the input member-
ship degree, as the system has a single input. In more complex cases, it is
obtained by combining the MFs present in the rule premise.

It is shown as a numerical value if the output is crisp, or as a filled area ratio
if the output is fuzzy.

For each output:

• The inferred value is displayed on top, at the right, 480 here.

The Price output being crisp, with a Sugeno defuzzification and a sum aggre-
gation, the inferred value is simply a weighted average of the rule conclusions,
where the weights are the rule matching degrees.

For any degree in the Degree input range, between 9 and 14, we get the corre-
sponding price.

The price progression is smooth, due to the interpolating capacities of the FIS.
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Figure 5: Fuzzy inference in FisPro
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2 A more complex system
We will build a more realistic system from the first one, by adding a variable and
modifying the rules to take both variables into account.

The extra input is the parcel yield.
Our objective is to reproduce the reasoning synthesized on figure 2.

Price must go down when yield increases, and go up when the alcohoolic degree
increases. Below a given degree, or above a given yield, price is set to a fixed
value.

Figure 6: Cooperator remuneration

2.1 The yield variable
To add the Yield input, do as indicated in section Defining an input (1.1).

Set the range as [50,100], and build a regular partition grid with 4 MFs, with
respective names: Low, Average, High and Very High.

You will get the partition represented in figure 7.
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Figure 7: Partition for the Yield input
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2.2 Generate the rules
We wish to write the rule base represented in figure 8.

Figure 8: Rule base

The easiest way is to automatically generate the rule premise, using the Gen-
erate rules option in the FIS menu.

This option generates the rules corresponding to all possible combinations
of the input MF variables: Degree and Yield, 4x3=12 rules in our case. Rule
conclusions are initialized with a zero value, and must be modified.

Some of the generated rules can be simplified. This concerns Low degrees and
very high yields. First remove the useless rules, then enter the rule conclusions in
the Price column, as given in figure 2.

2.3 View the inference results
Use the Infer option in the FIS menu, and change the variable values in turn. The
behavior of the fuzzy system is as expected and easy to understand.
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Figure 9: Inference for remunerating cooperators
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3 Elementary fuzzy logic glossary
• fuzzy set : A fuzzy set is defined by its membership function. A point

in the universe, x, belongs to a fuzzy set, A with a membership degree,
0 ≤ µA(x) ≤ 1.

Figure 10 shows a triangle membership function.
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Figure 10: A triangle membership function

• Fuzzy set prototype: a point is a fuzzy set prototype if its membership de-
gree is equal to 1.

• Operators:

– AND : conjunction operator, denoted ∧, the most common operators
are minimum and product.

– OR : disjunction operator, the most common are maximum and sum.

– IS : the relation x is A is quantified by the membership degree of x
in the fuzzy set A.

• Partitioning: Partitioning is the definition of the fuzzy sets for a variable
definition range. These sets are denoted A1, A2, . . .

• Standardized fuzzy partition: a fuzzy partition of the Xi variable is called a
standardized fuzzy partition if ∀x ∈ Xi,

∑
j

µAij(x) = 1.
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• Item : an item or individual is composed of a p-dimensional input vector x,
and eventually of a q-dimensional output vector.

• Fuzzy rule: A fuzzy rule is written as If situation Then conclusion. The
situation, called rule premise or antecedent, is defined as a combination
of relations such as x is A for each component of the input vector. The
conclusion part is called consequency or conclusion.

• There are two main types of fuzzy rules:

1. Mamdani type. The rule conclusion is a fuzzy set.
The rule is written as:

IF x1 is A
i
1 AND x2 is A

i
2 . . . AND xp is A

i
p

THEN y1 is C
i
1 . . . AND yq is C

i
q

where Aij and C
i
j are fuzzy sets defining the iput and output space

partitioning.

2. Takagi-Sugeno type. The rule conclusion is a crisp value.
The conclusion of the ith rule for the jth output is calculated as a linear
function of the input values: yij = bijo + bij1x1 + bij2x2 + · · · + bijpxp,
also denoted yij = f ij(x).

• Uncomplete rule: A fuzzy rule is said to be uncomplete if its premise is
defined by a subset of the input variables. For instance, the rule

IF x2 is A
1
2 THEN y is C2

is an uncomplete rule, as the variable x1 does not appear in its premise.
Expert rules are generally uncomplete rules. Formally an uncomplete rule
can be rewritten as an implicit combination of logical connectors AND and
OR operating on all the variables. If the universe of the variable x1 is split
into three fuzzy sets, the above rule can also be written as:

IF (x1 is A
1
1 OR x1 is A

2
1 OR x1 is A

3
1) AND x2 is A

1
2 THEN y is C2.
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• Matching degree: For a given data item and a given rule, the rule matching
degree, or weight, is denoted w. It is obtained by the conjunction of the
premise elements: w = µAi1(x1) ∧ µAi2(x2) ∧ . . . ∧ µAip(xp), where µAij(xj)
is the membership degree of the xj value in the fuzzy set Aij .

• Activation: An item is said to activate a rule, if the rule matching degree for
the item is greater than zero.

• Rule prototype: an item is a rule prototype if the rule matching degree for
this item is equal to 1.

• Fuzzy inference system (FIS): A fuzzy inference system is composed of
three blocks, as shown in Figure 11. The first block is the fuzzification
block. It transforms numerical values into membership degrees in the dif-
ferent fuzzy sets of the partition. The second block is the inference engine,
with the rule base. The third one implements the defuzzification stage if
necessary. It yields a crisp value from the rule aggregation result. The num-
ber of rules in the FIS is denoted r.

outputoutput

If...Then

inputinput

base
Fuzzy rule

Defuzzyfication

crisp crispfuzzy

Inference engineFuzzyfication

fuzzy

Small LargeAverage

e

µ (e)
A

µ
L

(e)

x ŷ

Figure 11: A fuzzy inference system

• System inferred output: denoted ŷi for the ith item. The inferred value, for
a given input, depends both on the rule aggregation and the defuzzification
operators.

Rule aggregation is done in a disjunctive way, meaning that each rule opens
a possible range for the output. The two main operators are the maximun
and the sum. The resulting levels are, r being the number of rules and m
the number of labels in the output partition:
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– max: ∀j = 1, . . . ,m W j =
{
max
r

(wr(x)) | Cr = j
}

– sum: ∀j = 1, . . . ,m W j = min

(
1,

{∑
r

(wr(x)) | Cr = j

})

Several defuzzification operators are available. Figure 12 illustrates the pro-
cess, when two labels have a non null resulting level, for two main kinds of
operators.
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Figure 12: Area defuzzification

The inferred system output for the ith example is noted ŷi.

The mean of maxima operator yields ŷi = mm. This operator only consid-
ers the segment defined by the maximum level. It mainly works within a
single linguistic label. Others similar outputs are possible, for example the
minimum value of the maximum level or the maximum one.

The weighted area technique favors interpolation between linguistic terms.
The output is equal to:

ŷi =

m∑
j=1

αC
j
area(Cj

α)

m∑
j=1

area(Cj
α)

(1)

wherem is the number of fuzzy sets in the partition, α = W j is the resulting
level of the jth fuzzy set, αCj is the x-coordinate of Cj

α centroid, and Cj
α is

a new fuzzy set, defined from Cj as:

µC
j
α(xi) =

{
µ(xi) if µC

j
(xi) ≤ α

α otherwise

19



• Supervised learning: It induces an input-output mapping from a data set,
called learning data set. It is usually limited to a MISO (multiple input
single output) system. The learning data set includes n items.

• Mean square error: denotedMSE, it is equal to: MSE =
1

n

n∑
i=1

‖ŷi − yi‖2

• Mean error: Contrary to the previous one, it is homogeneous to a data item.
It is expressed as

ME =
1

n

√√√√ n∑
i=1

‖ŷi − yi‖2 =
√
MSE√
n

(2)
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